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Chapter 1

Introduction

Take the following sentence:

‘If you read this thesis completely, you will invent time-travel.’

If you are asked whether you would believe this statement or not, your reply
will most likely be ‘no’. For one thing, time travel is most likely physically
impossible or at least technologically very far away; besides, there is no
evident causal relationship between the two parts of the sentence.
A candidate for a formal equivalent to the sentence above is a statement of
the form

p→ q .

In the expression p → q, p is called the antecedent and q is called the
consequent. The expression is read as ‘if p then q’ and understood as ‘if p
is true, then q is also true’, i.e. p → q is false precisely if p is true but q is
false. Now, take p to mean ‘you read this thesis completely’ and take q to
mean ‘you will invent time-travel’. If you are now asked whether you would
consider the implication p → q to be true, your reply will differ depending
on whether you read this thesis completely or not: in fact, you can make
the implication true by not reading a part of this paper.
The logical connective → is called the material conditional and you just
encountered one of its peculiar properties: if the antecedent is false, the
conditional statement is always true. This is a property which goes against
human understanding of implications in English sentences. It is one of many
questionable features of the material conditional.
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This thesis deals with a possible answer to the question: how can we define a
conditional differently in order to avoid such features? Ramsey (1931) sug-
gested that we evaluate a conditional statement by adding the antecedent
hypothetically to our knowledge of the world and then asking ourselves,
whether the consequent is true. Conditionalising on the antecedent in prob-
ability theory provides a formal framework for evaluating the consequent
given the antecedent. The present work thus explores attempts to define
conditionals probabilistically.
Two attempts to capture Ramsey’s idea in formal logic will be presented:
the first is the definition of a conditional by Adams (1966), that takes con-
ditional probabilities of the consequent given the antecedent as a measure
for acceptance of a conditional (and consecutively defines a probability of
a conditional by conditional probabilities). The second one is formulated
in terms of possible worlds (Stalnaker, 1980) and formalised into a logical
system C2, which will later turn out to be equivalent to a special case of
probabilistic conditionals.

Therefore, probabilistic conditionals constitute an alternative candidate of
formalising conditional statements in Ramsey’s sense and avoiding the para-
doxes of material implication. One motivation for a probabilistic theory of
conditionals is the idea to bring together the elaborate formal framework of
probability theory, with a still controversial interpretation, and the area of
conditional statements, where no formal theory (or too many formal theo-
ries) has been established yet.

The core of this thesis consists in an examination of the compelling hy-
pothesis that probabilities of conditionals are not merely defined by con-
ditional probabilities but can be considered as elements of the probability
space themselves. It is compelling because this way, it would be possible to
treat conditionals as propositions, e.g. calculate the probability of a condi-
tional given a proposition or even another conditional, which is not possible
in Adams’ framework. This hypothesis is followed by some impossibility
results by David Lewis (Lewis, 1976, 1986), and Alan Hájek and Ned Hall
(Hájek, 1994, Hájek & Hall, 1994) that pose strong evidence against it.

This Bachelor’s thesis is primarily a work in mathematics, not in philos-
ophy. This implies two things:
First, it focuses on formal arguments rather than interpretation. There is
a lot more to say on the semantic aspects of Adams and Stalnaker condi-
tionals, or why the hypothesis about probabilistic conditionals is on the one
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hand so compelling and, on the other hand, which (non-formal) arguments
speak against it. To embrace even just the central part of these ‘softer’
results would go beyond the scope of this thesis. A more thorough account
from the perspective of philosophy can be found in Alan Hájek’s PhD dis-
sertation (Hájek, 1993).
Second, in contrast to theses in philosophy, this thesis does not defend and
culminate in a particular position (which is common in philosophy) but
rather presents an overview over the development of a collection of results
from different authors (which is common in mathematics).

The thesis is structured as follows:

In Chapter 2, I will portray some situations that are problematic about the
material conditional as a possible formalisation of conditional statements.
Additionally, I will describe Grice’s theory of implicatures in defence of the
material conditional and explain why it is insufficient to solve all the arising
paradoxes.

In Chapter 3, I will provide the formal framework to be able to speak of
the probability of a sentence given another. To do that, I will describe the
axioms of probability theory and introduce the notion of the probability of
sentences in a formal language. A reader familiar with these concepts may
skip this chapter.

The main part of this thesis consists of Chapters 4 and 5. In Chapter 4,
I will present an explanation of why a probabilistic theory of conditionals
is appealing, based on Ramsey’s idea how truth values of conditionals are
usually evaluated, and present two attempts to capture this idea, namely
the conditionals of Adams and Stalnaker. In Chapter 5, based on the work
of Lewis, Hájek and Hall, I shall present the central hypothesis regarding the
probability of a conditional – ‘probabilities of conditionals are conditional
probabilities’ – and arguments disproving it.
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Chapter 2

The Material Conditional
and its Problems

This chapter motivates introductions of alternative definitions of condition-
als by highlighting some of the problems of the material conditional.
As we will see in the first part of the chapter, material implication as a can-
didate for a formalisation of implications of conversational sentences (i.e.
English sentences of the form ‘if something is the case, then something else
is the case’) leads to sentences that do not agree with out intuitions re-
garding conversational statements – such as the fact that from inconsistent
premises anything follows.
In the second part of the chapter, an additional theory is introduced in an
attempt to amend those conditional sentences that are true but counterin-
tuitive, namely Grice’s theory of implicatures that aims to determine which
true material implications are conversationally appropriate and which are
not.

2.1 Paradoxes of Material Implication

The material implication (sometimes called material conditional), here de-
noted by ‘→’, is a logical connective which, in classical logic, has the follow-
ing truth value function:
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p q ¬p ¬q p→ q ¬q → ¬p
T T F F T T
F T T F T T
T F F T F F
F F T T T T

The conditional p → q is equivalent to ¬q → ¬p, which one can see from
the fact that they have the same truth table.

Principle of Explosion

One problem of the material conditional is the principle of explosion which
states that from inconsistent premises, anything follows:

|= ((¬A ∧A)→ B) (2.1)

This property is counterintuitive becauseA andB do not need to be ‘causally’
related in any way. Consider the implication from A and ¬A to B in the
following example:

(A) The sun is shining.
(¬A) The sun is not shining.
(B) Paul Erdös just turned into a zombie.

According to the truth table, this is a valid consequence which, even though
many mathematicians may wish for it to be true, few human beings would
intuitively accept.

Further Paradoxes

Some other paradoxes that arise from the truth table of the material impli-
cation are

p→ (q → p) , (2.2)

p→ (q ∨ ¬q) , (2.3)

(p→ q) ∨ (q → r) . (2.4)

The Expression (2.2) is true since if p is true, q → p is also true for all q.
The Implication (2.3) is true since q ∨ ¬q is true for all q so the validity
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follows from (2.2). Finally, (2.4) is true since q ∨¬q is true; if q, then p→ q
for all p, and if ¬q, then q → r yields (¬q ∧ q) → r. This is an implication
with a contradiction in the antecedent and true according to the principle
of explosion mentioned before.

We now illustrate the paradoxical nature by three examples. For this pur-
pose, consider a version of the duck test:

If it looks like a duck, swims like a duck, and quacks like a duck,
then it is probably a duck.

The Implication (2.2) allows for the following statement:

Thomas Edison invented the light bulb. Therefore, if it looks like
a duck, swims like a duck, and quacks like a duck, then Thomas
Edison invented the light bulb.

This constitutes an example to (2.2) by taking p to be the sentence ‘Thomas
Edison invented the light bulb’, and q to be ‘it looks like a duck, swims like
a duck, and quacks like a duck’. It is true because the consequent is true,
Thomas Edison did invent the light bulb. It is also paradoxical because the
implication does not represent a causal connection we would accept.

Statement (2.3) yields the following sentence in ‘duck terminology’:

If it looks like a duck, then either it rains or it does not rain.

Since in (2.4) r can be p, the fact that this implication is true results in the
truth of the following example sentence:

If it is a duck, then it is a cat – or if it is a cat, then it is a duck.

This is nonsensical as in this case p and q are not only not causally related
but even contradict each other.

2.2 Intuitiveness, Implications and Implicatures

In the main part of this thesis, probabilistic conditionals are presented as a
way to avoid the undesirable properties of material implication. The purpose
of this section1 is to present H.P. Grice’s theory of implicatures, pointing out

1This section is based on Davis (2013).
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that there are cases where correct material implications are not conversation-
ally appropriate; since our intuitions refer to implications in conversations,
the unintuitiveness of some properties of the material conditional could be
resolved this way. At the end of the section, I will explain why Grice’s ac-
count is not adequate for a formal theory of ‘allowed’ conditionals.

In interpersonal communication, a speaker might imply something differ-
ent from the meaning a sentence itself conveys. The systematic study of
such cases was first undertaken by Grice (1975). Grice distinguished be-
tween conversational implicatures and conventional implicatures.

A conversational implicature relates not only to the uttered words but also
to the context. Consider this example of a conversation:

Alice: Are you going to Eve’s party?
Bob: I have to work.

The sentence Bob used does not mean that Bob is not going to the party
and yet this is the message conveyed by the speaker due to the context (i.e.
Alice expecting an answer to her question).
A conventional implicature on the other hand is part of the sentence’s mean-
ing, for instance in the following case:

Bob: (a) It’s a Monday; I have to work.
(b) It being a Monday implies that I have to work.

Besides this categorisation of implicatures, Grice developed a theory for
the description and explanation of conversational implicatures. According
to this theory, human communication is based on a general principle of
cooperation:

Cooperative Principle: Contribute what is required by the ac-
cepted purpose of the conversation.

Grice also states several specifications of this principle, such as the rule:
be as informative as required (by the purpose of the conversation). In the
following conversation, this rule has an immediate influence on the meaning
of a sentence:

Arthur: Hello! Where’s Alice?
Merlin: She is either in the cafeteria or in Bob’s office.

7



Due to the rule, it is implied that Merlin does not know where exactly Alice
is, for then his answer would either be:

(C) She is in the cafeteria, or
(O) She is in Bob’s office.

Hence this results in the fact that if C is the case2, the implicature C ∨ O
additionally provides the information that he does not know where she is.
For if the speaker knew that C is the case, she should not assert C ∨O.
If we believe that Alice is in the cafeteria we also believe that Alice is in
Bob’s office or the cafeteria; similarly, we believe that if Arthur just asked
a question, then he is a human being, probably male, which we also would
not state since the information ‘Arthur just asked a question’ is sufficient;
adding statements of the other beliefs would not make the description of the
situation any more informative.

The main difficulty is that Grice’s theory seems to be too weak: for al-
most each implicature, it seems that the rule used to produce it can be also
used to produce inexistent implicatures (Davis, 2013). Take the following
example sentence:

‘John met a woman.’

An implicature of this is:

‘John did not meet his wife.’

For otherwise the speaker would have been less informative. But analo-
gously, we can go from the statement

‘John broke a finger.’

to the next, stronger statement:

‘John did not break his own finger.’

This is clearly not what was the sentence about John breaking his finger
was intended to mean.

Grice’s theory explains correct examples of the nature of human commu-
nication very well. But although his strategy to determine implicatures –

2And therefore, C or O is the case.
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that is, asking: does the statement obey the Cooperative Principle? – deliv-
ers correct implicatures, the criteria derived from the Cooperative Principle
can explain false implicatures (which carry other meanings than the intended
one) just as well. Thus, the logic of material implication in combination with
Grice’s theory of implicatures still remains unsatisfactory.
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Chapter 3

Axioms and Basics of
Probability Theory

The previous chapter presented some of the ways in which the material im-
plication is inadequate. Now, in order to be able to define conditionals in a
probabilistic way, it is necessary to be able to speak of such things as ‘the
probability that the sky is blue’, or ‘the probability that the reader is going
to wake up tomorrow and find herself in the year 1742’.
To do so, a basic version of a formal system of probability theory1 is intro-
duced in this chapter. In particular, we will define the notion of probabilities
in the context of formal languages.
The last part2 of the chapter provides a brief introduction into different
ways to grasp the concept of probability and hereby establishes the context
of subjective probability, in which the rest of the thesis is set.

3.1 Probability of Subsets of a Set

Definition. Let Ω 6= ∅ be a set. An algebra on Ω is a set F ⊆ P(Ω) of
subsets of Ω with the following properties:

(I) Ω ∈ F .

(II) A ∈ F ⇒ Ω\A ∈ F (closed under complement with respect to Ω).

(III) B,C ∈ F ⇒ B ∪ C ∈ F (closed under finite unions).

1Based on Klenke (2008).
2See Hájek (2012).
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Definition. Let P : F → R be a function obeying

(A) P (A) ≥ 0 for all A ∈ F (non-negativity),

(B) P (Ω) = 1 (normalisation),

(C) P (A∪B) = P (A) +P (B) for all A,B ∈ F such that A∩B = ∅ (finite
additivity).3

Then (Ω, F, P ) is called a probability space and P a probability function.
Elements of F are called events.

Conditional Probability

We conclude Section 3.1 with the definition of conditional probability and
a review of Bayes’ theorem for reference in future chapters.

Definition (Conditional Probability). Let (Ω, F, P ) is

P (A|B) =
P (A ∩B)

P (B)
.

Theorem (Bayes’ Theorem). Let P be a probability function on a probability
space (Ω, F, P ) and let P (A) > 0. Then,

P (B|A) =
P (A|B)P (B)

P (A)
.

Proof.

P (A|B) =
P (A ∩B)

P (B)

P (B|A) =
P (A ∩B)

P (A)

Therefore,
P (A|B)P (B) = P (A ∩B) = P (B|A)P (A) .

Dividing by P (A), the result immediately follows.

3Sometimes closure under countable instead of just finite unions is required for F ;
subsequently, countable additivity (also called sigma additivity) is required instead of (C):
P (

⋃∞
i=1 Ai) =

∑∞
i=1 P (Ai) if the Ai are pairwise disjunct. This is a stronger statement

which is only necessary for more technical cases, such as proving the continuity of the
probability function P for decreasing sequences of sets.
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3.2 Formal Languages

3.2.1 The Language of Propositional Logic

Definition. A formal language consists of a set of symbols (the alphabet)
and a set of rules on how to form strings of symbols (the grammar).

Definition. The language of propositional logic4 consists of:

(i) Infinitely many propositional variables: {ai|i ∈ N}

(ii) Symbols for the propositional connectives5: ∧,∨,¬,⊃,↔

(iii) Parentheses: (, )

Definition (well-formed formulae).

(i) Every propositional variable is a well-formed formula.

(ii) If f is a well-formed formula, so is ¬f .

(iii) If f, g are well-formed formulas, so are (f ∧ g), (f ∨ g), (f ⊃ g) and
(f ↔ g).

(iv) Nothing else is a well-formed formula.

Definition (truth values and valuations). Each proposition has one of the
two truth values ‘true’ (T) or ‘false’ (F). The truth value of each well-formed
formula is uniquely determined by the truth values of its parts; a function
mapping each sentence to a truth value is called a valuation.

Definition (atomic formulae). Each well-formed formula is either an atomic
or a non-atomic formula; non-atomic formulae are characterised by the prop-
erty that they can be divided into partial expressions where the truth value
of the non-atomic well-formed formula depends on the truth values of the
atomic formulae it consists of.

3.2.2 Probability of Sentences of a Formal Language

Analogously to the probabilities of subsets of a set, one can attach proba-
bilities to sentences in a formal language6:

4See Goldrei (2005).
5The material conditional contained in L is denoted by ⊃ in order to avoid mistaking

the different specifications of ‘→’ in Chapters 4 and 5 for the material conditional.
6Based on Demey et al. (2013)
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Definition. Let F be a collection of sentences in a formal language L that
is closed under truth functional combinations. A probability function P on
(L, F, P ) is a function P : F → R such that

(a) P (A) ≥ 0 for all A in F (non-negativity),

(b) If T is a logical truth7, then P (T ) = 1 (normalisation),

(c) P (A∨B) = P (A)+P (B) for all A,B ∈ F such that A and B are logically
incompatible, i.e. in classical logic A ∧B ` ⊥ (finite additivity).

In this case, (L, F, P ) is called a probability space and elements in F are
called events.

The definition of conditional probability and Bayes’ theorem also hold for
formal language-based probability spaces. In the remainder of the thesis,
let L be the language of propositional logic.

3.3 Interpretations of Probability

For the formal definitions of probability theory, the aforementioned axioms
are the standard; but a completely different aspect to consider is the under-
standing of the concept of probability8. What is meant by ‘the probability of
an event’? If the probability of an outcome of an experiment is 0.5, does it
mean that the event will happen close to 50 out of 100 times under the same
conditions? What if the experiment cannot be repeated under exactly the
same conditions, for example because the outcome changes the conditions?
Interpretations of probability can be roughly divided into five types: classi-
cal, logical, subjectivist, frequentist, and propensity interpretations (Hájek,
2012). While the different types branch out even further, the discrimination
that is especially relevant for the study of conditionals is the one between
subjectivist and objectivist accounts.

Objective Probabilities

In interpretations of this kind, probabilities are considered as a property of
the outer world. For instance, in frequentist interpretations a probability is
seen as the relative frequency of occurences of the event in question (or, in

7A logical truth is a proposition that can never be false; for example, a tautology.
8This section is based on (Hájek, 2012).
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case of infinite sequences of events, the limiting relative frequency). Propen-
sity interpretations avoid the problem of single measurements (for example,
one single coin toss does nott result in a frequentist probability) by relating
probabilities to the causes of outcomes of a particular experiment.

Subjective Probabilities

Subjective interpretations can be characterised by the statement: ‘Proba-
bility is degree of belief.’ This approach identifies probabilities with degrees
of confidence of different agents at particular times.
Unconstrained subjectivism, posing no requirements to the agent, is not
tenable; people have been shown to ‘violate the probability calculus in spec-
tacular ways’ (Hájek, 2012).
From the point of view of someone interested in coherent probability in-
terpretations, a more interesting case results from the assumption that the
agent is rational. In particular, a rational agent’s beliefs have to be logically
consistent. It can be shown that logical consistence implies agreement with
the axioms of probability calculus.

Now we have the necessary tools in order to go on to the next chapter,
which will deal with the question: how do we evaluate conditionals, and
how can this be formalised?
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Chapter 4

Conditionals

After the necessary background to discuss probabilistic conditionals has been
provided in the previous chapter, this chapter is based on Ramsey’s idea how
one can determine whether to accept a conditional. It will explain the idea
and present two alternatives to the case of the material implication that
are based on this idea: first, Adams Conditionals; and second – after a
very short introduction to modal logic necessary to define them – Stalnaker
Conditionals. In the last part, a formal framework for Stalnaker conditionals
(Stalnaker’s C2 logic) will be described.

4.1 Ramsey Test

In a footnote to his article, Ramsey (1931) suggested the following accept-
ability condition for a conditional:

If two people are arguing ’If p, then q?’ and are both in
doubt as to p, they are adding p hypothetically to their stock
of knowledge and arguing on that basis about q; so that in a
sense ’If p, q’ and ’If p, q’ are contradictories. We can say that
they are fixing their degree of belief in q given p. If p turns out
false, these degrees of belief are rendered void. If either party
believes not p for certain, the question ceases to mean anything
to him except as a question about what follows from certain laws
or hypotheses.

That is: if you want to determine whether to believe p → q, add p hy-
pothetically to your set of beliefs and determine your degree of belief in
q.

15



4.2 Adams Conditionals

According to Ernest Adams (1988), conditionals are not factual claims that
have truth values but bear conditional probabilities (Skyrms, 1994). In a
sense, they constitute a probabilistic formalisation of the Ramsey test: two
dialogue partners evaluating p → q by ‘adding p hypothetically to their
stock of knowledge’ in the framework of probability theory means precisely
conditioning on p.
Depending on which interpretation of probability one considers (probabili-
ties as objective chances or as degrees of belief; see Section 3.3), his original
hypothesis results in two theories:
With the degree-of-belief interpretation, conditionals play a role in updat-
ing our degrees of belief: Let q be a proposition and P (q) the probability
which we assigned to it. Given some new evidence e, we update our degree
of belief P (q) 7→ P (q|e), the conditional probability of q on e. The original
Adams hypothesis is that this updated probability equals to the probability
of the conditional, P (q|e) = P (q → e) (Skyrms, 1994). This second account
of conditionals with probability functions ‘based on the concept of knowl-
edge rather than truth’ (Stalnaker, 1980) is therefore relevant to Stalnaker’s
system of conditional logic and to the hypothesis. In Adams’ theory of con-
ditionals, probabilities are always understood as subjective probabilities.
It is also possible to build a theory of conditionals interpreting conditional
probabilites as objective chances. Such an account of conditionals is closely
related to the framework of rational choice (see Hájek & Hall (1994)).

4.3 A Glimpse of Modal Logic

In an article in 1912, C.I. Lewis found himself startled by two of the theorems
in Russell and Whitehead’s Principia Mathematica. He was referring to
two formulas we already encountered in Chapter 2 as paradoxes of material
implication:

¬p→ (p→ q) (2.1)

(‘From a false proposition, anything follows.’)

and

p→ (q → p) (2.2)

(‘A true proposition follows from anything.’)
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According to C.I. Lewis, these paradoxes by themselves do not pose a con-
tradiction or danger of any sort; they merely result from the particular
definition of implication as the material implication, which is an inadequate
representation of what we would like ‘implication’ to mean:

‘In themselves, they are neither mysterious sayings, nor great
discoveries, nor gross absurdities. They exhibit only, in sharp
outline, the meaning of ‘implies’ which has been incorporated
into the algebra.’ (C.I. Lewis, 1912)

Take Statement (2.2), for instance. From p being true it does not logically
follow that p logically follows from any particular proposition at all, let alone
any proposition. To incorporate a better-behaved meaning of ‘implies’ into
logic, C.I. Lewis introduced the strict conditional.

4.3.1 Possible Worlds Semantics for Modal Logic

In order to introduce C.I. Lewis’ strict conditional and Stalnaker’s under-
standing of a conditional, some background on the operators of modal logic1

is now provided.

Recalling the language of propositional logic in Section 3.2.1, a valuation
assigns a truth value (T or F ) to a sentence. It does so by assigning a truth
value to each propositional variable p; then the truth values of complex
(non-atomic) sentences are calculated using truth tables.

In modal semantics, a set W of possible worlds is introduced. A valua-
tion gives a truth value to each propositional variable p for each possible
world in W . The truth value assigned to p for a world w ∈ W may differ
from the truth value assigned to p for w′ ∈W .

Notation: v(p, w) denotes the truth value of the atomic sentence p at
world w given by the valuation v.

Definition. The operator of possibility is denoted by ♦, where ♦q is to be
interpreted to be ‘it is possible that q’. The operator of necessity is denoted
by �, where �p should be read as: ‘it is necessary that p’. These operators
are dual to each other in the following sense:

1This section is based on Ballarin (2010).
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�p↔ ¬♦¬p
♦q ↔ ¬�¬q

(Usually, one of these statements is required by definition; the other one
follows.)

Definition (truth values for complex sentences).

(¬) v(¬A,w) = T iff v(A,w) = F

(→) v(A→ B,w) = T iff v(A,w) = F or v(B,w) = T

(�) v(�A,w) = T iff for every world w′ ∈W, v(A,w′) = T

For (¬) and (→), this is normal truth table behaviour. Moreover, given that
♦A = ¬�¬A, (�) insures that ♦A is true exactly in those cases where A is
true in at least one possible world.

4.3.2 C.I. Lewis’ Strict Conditionals

Definition. The strict implication p J q is defined as:

p J q := ¬♦(p ∧ ¬q)

The axioms for C.I. Lewis’ logical system S3 are:

s1 (p ∧ q) J (q ∧ p)

s2 (p ∧ q) J p

s3 p J (p ∧ p)

s4 ((p ∧ q) ∧ r) J (p ∧ (q ∧ r))

s5 ((p J q) ∧ (q J r)) J (p J r)

s6 (p ∧ (p J q)) J q

s7 ♦(p ∧ q) J ♦p (consistency)

s8 (p J q) J (¬♦q J ¬♦p)

The rules of S3 are:
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• Uniform substitution: A valid formula remains valid if a formula
is uniformly substituted in it for a propositional variable (that is, if
all occurrences of the variable are substituted by the formula while
leaving all other variables fixed).

• Substitution of Strict Equivalents: If Φ J Ψ and Ψ J Φ, Φ and
Ψ can be substituted for each other.

• Adjunction: If Ψ and Φ are inferred, then Ψ∧Φ can also be inferred.

• Strict Inference: If Φ and Φ J Ψ have been inferred, Ψ can also be
inferred.

The strict conditional also has its problems (Egré & Cozic, 2012). For in-
stance, inferences by contraposition and transitivity are still possible. That
is,

p J q |= ¬q J ¬p

and
(p J q) ∧ (q J r) |= p J r .

To see why inference by contraposition is undesirable, consider the following
conditional sentence as an example: ‘If it is Anne’s birthday, she will get a
present today.’ By contraposition we get: ‘If Anne will not get a present
today, it is not Anne’s birthday.’ This statement is wrong; for example, it
might be Christmas.

Transitivity is ‘bad’ since strengthening is a special case of transitivity: if
transitivity did hold, we would have that if A→ B was true, (A ∧ C)→ B
would be true as well. But this also does not properly capture conversational
reasoning; consider the sentences ‘If I buy a bottle of water in the summer,
it won’t freeze.’ and ‘If I buy a bottle of water in the summer and put it in
the freezer, it won’t freeze.’

4.4 Stalnaker Conditionals

Stalnaker considered the problem of implication in some sense the other way
around than Adams: instead of thinking of how a conditional statement
must look like to be true or not, his approach is based on the perspective of
a selection function. Such a function constitutes a tool to determine whether
a possible world is such that the conditional is true in this particular world
and, if not, to select another one.
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Definition. A selection function is a function f that maps each pair (p, w)
where p is a propositional variable in L and w is a possible world in the set
of possible worlds W , to a possible world w′:

f : (W,L)→W

(w, p) 7→ w′

A conditional is said to be true in the actual world whenever its consequent
is true in the selected world.

Using the corner (‘>’) as the conditional connective, the assertion which
the conditional (p > q) makes is: the consequent is true in the world that is
selected:

A > B is true in α ∈W if B is true in f(A,α);
A > B is false in α if B is false in f(A,α).

Thus, conditional logic is an extension of modal logic making use of possible-
world semantics.

4.5 Stalnaker’s C2 Logic

The class of valid formulas of Stalnaker’s conditional logic portrayed in the
previous section coincides with the class of theorems in Stalnaker’s formal
system C2.

C2 contains the primitive connectives ⊃ (formalisation of the material im-
plication), ¬, and >. The connectives ∨ and ∧ can be constructed using
these primitive connectives:

(A ∨B) = (A ⊃ (¬B))

(A ∧B) = ¬(¬A ∨ ¬B)

The modal operators of possibility and necessity are defined using the corner:

�A := (¬A) > A

♦A := ¬(A > ¬A)

A ≶ B := (A > (B ∧ (B > A)))

The axioms for C2 are:
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a1 Any tautologous well-formed formula is an axiom.

a2 �(A ⊃ B) ⊃ (�A ⊃ �B)

a3 �(A ⊃ P ) ⊃ (A > B)

a4 ♦A ⊃ ((A > B) ⊃ ¬(A ⊃ ¬B))

a5 A > (B ∨ C) ⊃ ((A > B) ∨ (A > C))

a6 (A > B) ⊃ (A ⊃ B)

a7 A ≶ B ⊃ ((A > C) ⊃ (B > C))

The rules of inference are:

• Modus ponens: If A and A ⊃ B are theorems, then so is B.

• Gödel rule of necessitation: If A is a theorem, then �A is a theo-
rem.

Properties of Stalnaker conditionals

Robert Stalnaker states the conditional denoted by ‘>’ to be intermediate
between the strict implication and the material implication. The following
unsusual features are particularly remarkable (Stalnaker, 1980):

• The inference of contraposition, which is valid for both ‘⊃’ and ‘J’,
is invalid for ‘>’. A > B may be true while ¬B > ¬A is false. In
conversational usage, the inference of contraposition is in general also
invalid (see 4.3.2).

• Transitivity does not hold. This is desirable, since strengthening is an
conversationally unplausible inference (see 4.3.2), and strengthening is
a special case of transitivity.

This chapter has introduced three types of conditionals: Adams condition-
als as bearers of conditional probabilities, C.I. Lewis’ strict conditionals in
a type of modal logic, and Stalnaker conditionals in terms of strict condi-
tionals and possible worlds semantics. The next chapter will now deal with
a fundamental hypothesis regarding the nature of conditionals.
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Chapter 5

The CCCP Hypothesis

This chapter will introduce the hypothesis that conditional probability is
the probability of the conditional. This differs from Adams’ account of con-
ditionals insofar as it does not only define the probability of a conditional by
conditional probability, but hopes for a more fundamental type of equality:
the hypothesis claims that conditionals can be considered as elements of the
probability space, that they can be assigned probabilities, and that these
probabilities coincide with the conditional probabilities of the consequent
given the antecedent.

The most general version of the hypothesis is: ‘Conditional probability is
the probability of the conditional ’. That is,

P (A→ B) = P (B|A) , (5.1)

where A,B ∈ Ω and P (A) > 0. This is the Conditional Construal of
Conditional Probability – a term that was introduced by Hájek & Hall
(1994). They differentiate between the following statements that result by
quantifying over the probability functions and conditionals in four different
ways. An informal account of those ways is given here, and is later made
more precise in Section (5.2).

(1) There is some1 ‘→’ such that for all probability functions P , CCCP
holds.

(2) There is some ‘→’ such that for all probability functions P that could
represent a rational agent’s system of beliefs, CCCP holds.

1Please note that in this paragraph, ‘→’ does not stand for the material conditional!
Here, it denotes some conditional that is yet to be specified. This notation is kept through-
out the remainder of this chapter unless stated otherwise.

22



(3) For each probability function P there is some ‘→’ such that CCCP holds.

(4) For each probability function P that could represent a rational agent’s
system of beliefs, there is some ‘→’ such that CCCP holds.

Hájek & Hall (1994) show that the second and fourth versions, although
underspecified2, are not tenable. For the other two versions, this has been
shown before by Lewis (1986).
In Section 5.1 of this chapter, a simple argument against the general formula-
tion of the hypothesis is presented. In Section 5.2, the four different versions
of the hypothesis are restated in a slightly different terminology, and it is
shown that the hypothesis with few additional requirements already entails
the characteristic principles for Stalnaker’s C2 logic introduced in Section
4.4. This is followed by Lewis’ triviality results and their proofs in Section
5.3 and Hájek and Hall’s triviality results in Section 5.4. The chapter con-
cludes by reviewing what the triviality results mean for the hypothesis in
Section 5.5.

5.1 Disproving the CCCP Hypothesis

The first version of the hypothesis, being the most general formulation, is
easier to disprove than the other versions. It is sufficient to find for any ‘→’
one probability function and a pair of events such that Equation (5.1) does
not hold.

Proposition. The version of CCCP that is given by (1) in the list above
does not hold.

Definition. P is called a CCCP-function, if P (Y |X) = P (X → Y ) for any
pair of events X, Y .

Proof. Let P1, P2 be two distinct CCCP-functions for a ‘→’, and let P3 =
1
2P1 + 1

2P2. Let A,B be two events such that Pi(A), Pi(B), Pi(A ∩ B)
(where i = 1, 2) are all positive3 and P1(B|A) 6= P2(B|A). Assume P3 is a
CCCP-function. Now,

P3(B|A) =
P3(A ∩B)

P3(A)
=

1
2P1(A ∩B) + 1

2P2(A ∩B)
1
2(P1(A) + P2(A))

2Without choosing a definition of a rational agent.
3Since P (X) ≥ 0 for any probability function P and event X, in the context of proba-

bility, ‘positive’ means ‘strictly greater than zero’.
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by the definition of conditional probability. Furthermore,

P3(A→ B) =
1

2
P1(A→ B) +

1

2
P2(A→ B)

=
1

2
P1(B|A) +

1

2
P2(B|A)

=
1

2

P1(A ∩B)

P1(A)
+

1

2

P2(A ∩B)

P2(A)
.

This holds because P1 and P2 are CCCP-functions. By assumption, P3(B|A) =
P3(A→ B) and therefore, equating

1
2P1(A ∩B) + 1

2P2(A ∩B)
1
2(P1(A) + P2(A))

=
1

2

P1(A ∩B)

P1(A)
+

1

2

P2(A ∩B)

P2(A)

we get

P1(A)P2(A)(P1(A ∩B) + P2(A ∩B))

=
1

2
(P1(A ∩B)P2(A) + P2(A ∩B)P1(A)) · (P1(A) + P2(A)) .

This is equivalent to

P1(A ∩B)P1(A)P2(A) + P2(A ∩B)P1(A)P2(A)

=
1

2
(P1(A ∩B)P1(A)P2(A) + P1(A ∩B)P2(A)2

+ P2(A ∩B)P1(A)P2(A) + P2(A ∩B)P1(A)2) .

This results in

P1(A ∩B)P1(A)P2(A) + P2(A ∩B)P1(A)P2(A)

= P1(A ∩B)P2(A)2 + P2(A ∩B)P1(A)2 . (?)

The last equality does not necessarily hold, as is demonstrated next in a
case-by-case analysis.

(i) Let P1, P2 be such that P1(A ∩B) = P2(A ∩B) := P (A ∩B) 6= 0 but
P1(A) 6= P2(A). Then (?) results in:

2P (A ∩B)P1(A)P2(A) = P (A ∩B)P2(A)2 + P (A ∩B)P1(A)2

This is equivalent to:

P (A ∩B)(P1(A)− P2(A))2 = 0

Since P (A ∩ B) 6= 0, it must hold that (P1(A) − P2(A))2 = 0 and
therefore P1(A) = P2(A), a contradiction.
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(ii) Let P1(A∩B) 6= P2(A∩B) but P1(A) = P2(A). Then a contradiction
follows in analogy to (i).

(iii) Let P1(A ∩B) 6= P2(A ∩B) and P1(A) 6= P2(A).

0 = P1(A ∩B)
(
P1(A)P2(A)− P2(A)2

)
+ P2(A ∩B)

(
P1(A)P2(A)− P1(A)2

)
= (P1(A)− P2(A)) · P1(A ∩B)P2(A) + (P2(A)− P1(A)) · P2(A ∩B)P1(A)

= (P1(A)− P2(A)) · (P1(A ∩B)P2(A)− P2(A ∩B)P1(A))

Since P1(A) 6= P2(A), it follows that P1(A∩B)P2(A)−P2(A∩B)P1(A) =
0 and thus

P1(A ∩B)

P1(A)
=
P2(A ∩B)

P2(A)
.

This is equivalent to

P1(B|A) = P2(B|A)

and hereby contradicts the assumption.

5.2 A More Formal Approach to CCCP

In this section4, the additional terminology of models and conditional al-
gebras is introduced and the different versions of the CCCP hypothesis are
restated in this more formal framework that is useful to describe Lewis’ triv-
iality results in Section 5.3. It is then shown in Part 5.2.1 of this section that
by requiring the CCCP hypothesis and three additional axioms to hold, the
principles of Stalnaker’s C2 logic can be obtained, establishing the relevance
of the triviality results for the C2 logic.

Definition. Let (W,F, P ) be a probability space. (W,F, P,→) is called a
model and (W,F,→) a (conditional) algebra.

Definition. It is said that CCCP holds for a model (W,F, P,→) if for all
A,B ∈ F with P (A) > 0 it holds that P (A → B) = P (B|A). If CCCP
holds, the conditional operator denoted by → is called a CCCP-conditional
for the probability space (W,F, P ) and P is called a CCCP-function for this
space. A model (W,F, P,→) is called trivial if P has at most four values of
conditional probabilities. A probability space is called trivial if any model
containing it is trivial.

4This section is based on Hájek & Hall (1994).
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For a given trivial probability space, one can construct a ‘→’ that extends
it to a trivial model where CCCP holds. This implies that stating that the
property for a conditional to be a CCCP-conditional is only meaningful in
the context of non-trivial probability spaces; this makes the triviality results
tantamount to disproving the hypothesis, for they disprove the interesting
cases.

To construct such a ‘→’, let (W,F, P ) be a trivial probability space. Due to
triviality, P (X ∩ Y ) ∈ {0, 1, P (X), P (Y )} for all X,Y ∈ F . Define ‘→’ as
follows: if P (X∩Y ) = 0, let X → Y = ∅; if P (X∩Y ) = 1, let X → Y = W ;
and let X → Y = Y otherwise.
Now, X → Y can only be assigned the probabilities P (∅) = 0, P (W ) = 1
or P (Y ). Thus, this ‘→’ together with (W,F, P ) provides a trivial model
for which CCCP holds.
For this reason, the property of being a CCCP-conditional is only meaningful
when considering non-trivial probability spaces and models.

Definition. Let L→ denote the language of propositional logic together
with an additional5 implication ‘→’ such that L→ is closed under →.

Given W and F , we can now reformulate the four versions of the CCCP
hypothesis in this terminology:

(1’) There is some ‘→’ such that CCCP holds for all models (W,F, P,→),
where P is defined on L→. (Universal version)

(2’) There is some ‘→’ such that CCCP holds for all models (W,F, P,→),
where P is defined on L→ and could describe a rational agent’s set of
beliefs. (Belief function version)

(3’) For each P there is some ‘→’ such that CCCP holds for the model
(W,F, P,→). (Universal tailoring version)

(4’) For each P that could describe a rational agent’s set of beliefs, there
is some ‘→’ such that CCCP holds for the model (W,F, P,→). (Belief
function tailoring version)

Since ‘→’ should represent a conditional, one can pose additional require-
ments6 to the model (W,F, P,→):

(L1) For all A,B ∈ F , A ∩ (A→ B) ⊆ AB.7 (Modus ponens)

5Again, ‘→’ does not denote the material conditional; the material conditional is al-
ready contained in L.

6Hájek & Hall (1994)
7AB denotes A ∩B.
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(L2) For all A,B,C ∈ F , (A → B) ∩ (A → C) ⊆ A → (BC). (Entailment
of consequent)

(L3) For all A,B,C ∈ F , (A → B) ∩ (B → A) ∩ (B → C) ⊆ A → C.
(Weakened transitivity)

5.2.1 Probabilistic Entailment Results

Let (W,F, P ) be a model obeying (L1), (L2) and CCCP, and let A,B,C ∈ F .
Then the following properties hold:

(PE1) If A ⊆ B and P (A) > 0, then P (A→ B) = 1.

Proof.

P (A→ B) = P (B|A) (CCCP)

=
P (A ∩B)

P (A)
(P (A) > 0)

=
P (A)

P (A)
(A ⊆ B)

= 1

(PE2) If P (AB) = 0 and P (A) > 0, then P (A→ B) = 0.

Proof.

P (A→ B) = P (B|A) (CCCP)

=
P (A ∩B)

P (A)
(P (A) > 0)

= 0 (P (A ∩B) = 0)

(PE3) Let P (BC) = 0. If P (A) > 0, then P ((A→ B) ∩ (A→ C)) = 0.
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Proof. Axiom (L2) states that (A → B) ∩ (A → C) ⊆ A → (BC).
Thus,

P ((A→ B) ∩ (A→ C)) ≤ P (A→ BC)

= P (BC|A) (CCCP)

=
P (ABC)

P (A)
(P (A) > 0)

= 0 . (P (AB) = 0 and ABC ⊆ AB)

(PE4) If P (A) > 0, then P ((A → B) ∪ (A → B)) = 1 (where B = ¬B
denotes the complement of B).

Proof.

P ((A→ B) ∪ (A→ B))

= P (A→ B) + P (A→ B)− P ((A→ B) ∩ (A→ B)) (additivity)

= P (A→ B) + P (A→ B) (PE3)

= P (B|A) + P (B|A) (CCCP)

= 1

(PE5) If P (A) > 0, then P (C ∩ ¬(A→ B)) = P (C ∩ (A→ B)).

Proof.

P (C ∩ ¬(A→ B))

= P (((C ∩ ¬(A→ B)) ∩ ((A→ B) ∪ (A→ B)))) (PE4)

= P (C ∩ ¬(A→ B) ∩ (A→ B)) + P (C ∩ ¬(A→ B) ∩ (A→ B))︸ ︷︷ ︸
=0

= P (C ∩A→ B)− P (C ∩ (A→ B) ∩ (A→ B))

= P (C ∩A→ B) (PE3)

where the next-to-last equality holds because of expansion by cases:
P ((C ∩A)→ B)
= P (((C∩A)→ B)∩(A→ B))+P (((C∩A)→ B)∩¬(A→ B)).
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(PE6) If P (A) > 0, then P (A→ B ∩A→ C) = P (A→ BC).

Proof. For P (A) > 0,

P ((A→ B) ∩ (A→ C) ∩ ¬(A→ BC))

= P ((A→ B) ∩ (A→ C) ∩ (A→ B)) (PE5)

= 0 . (PE3) and (L2)

Therefore,

P (A→ B ∩A→ C)

= P (A→ B ∩A→ C ∩A→ BC)

= P (A→ BC)− P (¬(A→ B) ∩A→ BC)

− P (¬(A→ C) ∩A→ B ∩A→ BC) (L2)

= P (A→ BC)− P (A→ B ∩A→ BC)

− P (A→ B ∩A→ C ∩A→ BC) (PE5)

= P (A→ BC) . (PE3)

(PE7) If P (A) > 0, then P (A→ B ∪A→ C) = P (A→ (B ∪ C)).

Proof.

P (A→ B ∪A→ C)

= P (A→ B) + P (A→ C)− P (A→ B ∩A→ C)

= P (A→ B) + P (A→ C)− P (A ∩BC) (PE6)

= P (B|A) + P (C|A)− P (BC|A) (CCCP)

= P (B ∪ C|A) (set theory)

= P (A→ (B ∪ C)) (CCCP)

(PE8) If P (A ∪B) > 0, then P (((A ∪B)→ A) ∪ ((A ∪B)→ B)) = 1.

Proof.

P (((A ∪B)→ A) ∪ ((A ∪B)→ B))

= P ((A ∪B)→ (B ∪A)) (PE7)

= 1 (PE1)
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(PE9) P (AB) = P (A ∩ (A→ B)).

Proof. If P (A) = 0, then it holds trivially. Let P (A) > 0. Then,

P (AB) = P (AB ∩ (A→ B)) + P (AB ∩ ¬(A→ B))

= P (AB ∩ (A→ B)) + P (AB ∩ (A→ B)) (PE5)

= P (AB ∩ (A→ B)) (PE2)

= P (A ∩ (A→ B))− P (AB ∩ (A→ B))

= P (A ∩ (A→ B)) . (PE2)

Thus, the combination of CCCP with (L1) and (L2) implies every principle
describing Stalnaker’s C2 logic except for (L3), which therefore has to be
required separately. Hence probabilistic equivalents are sufficient to describe
the triviality results which are proved in the following section.

5.3 Lewis’ Triviality Results

Four different triviality results were proved by Lewis (1976, 1986). The
proofs of the triviality results are based on two steps: First, assuming that
the class of CCCP-functions for an algebra is closed under certain opera-
tions. Second, constructing a contradiction based on the specific type of this
assumption.

Definition. Two models (W1, F1, P1,→1) and (W2, F2, P2,→2) are said
to employ the same arrow iff their respective algebras (W1, F1,→1) and
(W2, F2,→2) are isomorphic. Thus, it is possible to speak of ‘the algebra
associated with a particular set of models’, that is, the models that employ
the same arrow. This algebra is defined up to isomorphism.

The natural question to examine is what the nontrivial CCCP-functions of
an algebra are. Concerning the answer to that question, there are two kinds
of triviality results:

1. Non-existence results. Those are of the form: There are no nontrivial
CCCP-functions for any algebra with certain properties.
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2. Limitation results. These can be expressed as: The set of nontrivial
CCCP-functions for any given algebra with some particular features is
limited in some way.

Definition. A probability function PC is derived from a probability function
P by conditioning if there is some C ∈ F such that ∀X ∈ F : PC(X) =
P (X|C).

Intuitively, if a person assigns a probability P (C) ∈ (0, 1) to an event C and
learns some new evidence that makes her change her subjective probability
for C to 1, then her subjective probability for any other propositionH should
be Q(H) = PC(H) (see Joyce (2008)).

Definition. Px is derived from P by nondegenerate two-celled Jeffrey con-
ditioning if there is a proposition C and an x with 0 < x < P (¬C) such
that for all B in F ,

Px(B) = P (B) + x · (P (B|C)− P (B|¬C)) .

Intuitively, if a person assigns probability P (C) ∈ (0, 1) to an event C and
in light of some new evidence changes her subjective probability for C to x,
then her subjective probability for any proposition B should be: Q(B) =
xPC(B) + (1 − x)P¬C(B) (see Joyce (2008)). That is, her new subjective
probability function should be equal to Px, the function derived from her
old subjective probability function by Jeffrey conditioning on x. Letting x
take its marginal values results in two degenerate cases: for x = 0, Jeffrey
conditioning means not conditioning at all; for x = 1, Jeffrey conditioning
is equivalent to the usual notion of conditioning.

Definition. A class of probability functions is closed under conditioning if
any probability function derived from a function in the class by conditioning
is also in the class. A class is closed under nondegenerate two-celled Jeffrey
conditioning if any probability function derived from a function in the class
by nondegenerate two-celled Jeffrey conditioning is also in the class.

For the remainder of this section, let (W,F,→) be an algebra (W = L), and
let S denote the set of CCCP-functions for this algebra.
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First Triviality Result

Theorem. S does not contain all probability functions definable on (W,F,→).

Proof. Suppose that → is a universal CCCP-conditional. Let P be a prob-
ability function and the sentences A,C ∈ F such that P (AC) > 0 and
P (AC) > 0. Since AC ⊆ A, AC ⊆ C and AC ⊆ C, it follows that P (A),
P (C) and P (C) are also positive. Since→ is a universal CCCP-conditional,
it holds that

P (A→ C) = P (C|A) .

Due to the assumed universality of the conditional, CCCP holds for all prob-
ability functions on the given algebra; therefore, PB(A → C) = PB(C|A)
for the function PB derived from P by conditioning on B. Therefore, taking
B as C, we get

P (A→ C|C) = P (C|AC) = 1 ,

P (A→ C|C) = P (C|AC) = 0 .

Expansion by cases for the sentence A→ C yields

P (A→ C) = P (A→ C)|C)P (C) + P (A→ C|C)P (C)

= P (C|AC)P (C) + P (C|AC)P (C)

= 1 · P (C) + 0 · P (C)

= P (C) .

Thus, assuming the existence of a universal CCCP-conditional we have
proved the following statement: If P (AC) and P (AC) are both positive,
then A and C are probabilistically independent under C.

Let C, D and E be sentences in F which are possible (i.e. have positive
probabilities under some probability function P ) but pairwise incompatible,
that is, P (CD) = P (DE) = P (CE) = 0. Let A denote the disjunction
C ∨D. Then P (AC) and P (AC) are positive but P (C|A) 6= P (C). If such
sentences exist in L, the result obtained above is a contradiction; if the lan-
guage is too primitive for three possible but pairwise incompatible sentences
to exist, it is merely absurd.

Therefore, the first triviality result can be reformulated as the following
proposition, justifying the term ‘triviality result’.

Proposition. Any language having a universal probability conditional is a
trivial language.
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Second Triviality Result

Theorem. If S contains any non-trivial functions, it is not closed under
conditioning.

Proof. Suppose that→ is a probability conditional for a class of probability
functions S which is closed under conditioning. Let P ∈ S and A,C ∈ F
such that P (AC) and P (AC) are positive. Analogously to the proof of the
first triviality result it follows that P (C|A) = P (C).
Now, let C, D and E be three pairwise incompatible sentences such that
P (C), P (D) and P (E) are all positive. Let A be the disjunction C ∨ D.
Then P (AC) and P (AC) are positive but P (C|A) 6= P (C). So there are no
such three sentences.
Also, P takes no more than four different values: assume that P has two
distinct probability values x, y ∈ (0, 1) such that x+ y 6= 1. Let F and G be
sentences such that P (F ) = x and P (G) = y. Then it follows that at least
three of P (FG), P (FG), P (FG) and P (FG) are positive.
To show this, assume one of the values is equal to zero; without loss of
generality, let P (FG) = 0. Then P (FG) = 1− P (FG) = 1.

Third Triviality Result

Lewis’ first two results are problematic because of the assumption that the
class of belief functions is closed under conditioning. Conditioning on a
specific proposition C and its (unspecific) negation ¬C might yield to con-
ditioning on the, as Lewis (1986) puts it, wrong sort of a proposition in one
case or the other and might not result in a belief function. Therefore Lewis
introduces a new class of propositions called evidence propositions and for
his third triviality result assumes that the class of belief function is closed
under conditioning on this more specified class.

Theorem. If S contains any non-trivial functions, it is not closed under
conditioning on propositions in a single finite partition.

Before giving the proof, the following definition motivates this specific for-
mulation of the theorem.

Definition. A class of evidence propositions is the class of propositions
characterising the total evidence available to a particular subject at a certain
time. (These propositions are mutually exclusive and jointly exhaustive.)

This suggests a new, weaker reformulation of the hypothesis: CCCP holds
throughout the class of belief functions. This class is closed under condi-
tioning on the elements of a finite partition of evidence propositions.
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Proof. Let P be a probability function in the class S. Let C,D,E, . . . be all
the propositions in the partition to which P assigns positive probabilities.
Assume that there are at least two such propositions. Let A be a proposi-
tion such that P (A|C), P (A|D), . . . are all positive and P (C|A) 6= P (C).
(If such P,C,D, . . . , A do not exist, call the case trivial.)
By finite additivity, the definition of conditional probability and the incom-
patibility of C,D, . . . we can expand by cases:

P (A→ C) = P (A→ C)P (C) + P (A→ D)P (D) + . . .

Suppose CCCP holds for this class. Then,

P (CA)

P (A)
=
P (CA|C)P (C)

P (A|C)
+
P (CA|D)P (D)

P (A|D)
+ . . .

Since C and D are incompatible, all but the first term on the right side
vanish and by simplifying we get

P (C|A) = P (C)

in contradiction to the assumption.

Fourth Triviality Result

Theorem. If S contains any non-trivial functions, it is not closed under
nondegenerate two-celled Jeffrey conditioning.

Proof. Let P ∈ S. Let C be a proposition such that P (C) and P (¬C) are
positive. Let A be a proposition such that P (A|C) and P (A|¬C) are both
positive and P (A|C) 6= P (A|¬C). If such P , C and A do not exist, call the
case ‘trivial’.
Otherwise, suppose S is closed under nondegenerate two-celled Jeffrey con-
ditioning. Thus, P and Px are both CCCP-functions, i.e.

P (A→ C) =
P (AC)

P (A)
,

Px(A→ C) =
Px(AC)

Px(A)
. (??)
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By definition of Jeffrey conditioning,

Px(A→ C) = P (A→ C) + x[P (A→ C|C)− P (A→ C|¬C)] ,

Px(AC) = P (AC) + x[P (AC|C)− P (AC|¬C)]

= P (AC) + xP (AC|C)

= P (AC) + xP (A|C) ,

Px(A) = P (A) + x[P (A|C)− P (A|¬C)] .

Using these three identities, Equation (??) expands to

P (A→ C) + x[P (A→ C|C)− P (A→ C|¬C)]

=
P (CA) + xP (A|C)

P (A) + x[P (A|C)− P (A|¬C)]
.

This is equivalent to

P (C|A)P (A)︸ ︷︷ ︸
=P (CA)

+P (C|A)x[P (A|C)− P (A|¬C)]

+x2[P (A→ C|C)− P (A→ C|¬C)][P (A|C)− P (A|¬C)]

=P (AC) + xP (A|C) .

Since x 6= 0 by the definition of non-degenerate Jeffrey conditioning, it is
equivalent to

P (C|A)[P (A|C)− P (A|¬C)]− P (A|C)

= x[P (A→ C|C)− P (A→ C|¬C)][P (A|C)− P (A|¬C)] .

Since this shall hold independently of the choice of x, the left-hand side of
the equation as well as the coefficient on the right-hand side must vanish.

Case 1

The right-hand side is equal to zero because P (A|C) = P (A|¬C). This
contradicts the choice of A.

35



Case 2

The right-hand side is equal to zero because P (A→ C|C) = P (A→ C|¬C).
Since the left-hand side is also equal to zero, we have

0 = P (C|A)[P (A|C)− P (A|¬C)]− P (A|C)

= P (A|C)[1− P (C|A)]︸ ︷︷ ︸
P (A|C)P (¬C|A)

+P (C|A)P (A|¬C) .

Since P , A and C were chosen such that P (A|¬C) 6= P (A|C) and, in par-

ticular, P (A) 6= 0, it follows that P (C|A) = P (AC)
P (A) = P (A|C)P (C)

P (A) is positive

since P (A|C) and P (C) were chosen to be positive. Therefore, the first
term, that is: P (A|C)P (¬C|A), already does not vanish. Thus, the equa-
tion above contradicts our choice of P , A and C.

5.4 Hájek and Hall’s Triviality Results

We conclude this chapter by briefly summarising some stronger triviality
results that were shown by Hájek and Hall. The results of David Lewis
outlined in the previous section are in part a consequence of these results.
As a description of all of Hájek and Hall’s triviality results goes beyond the
scope of this thesis, I shall present a selection of their results without proving
most of them; the interested reader is referred to Hájek & Hall (1994), Hájek
(1994), and Hall (1994).

Strengthened Lewis Result

A strengthened version of Lewis’ first three impossibility results can be
obtained using the trick of rewriting P (A → B|C) = PC(A → B) =
PC(B|A) = P (B|AC).

Theorem. If (W,F, P,→) and (W,F, PC ,→) are distinct non-trivial mod-
els where PC is derived from P by conditioning on C, then CCCP holds
for at most one of the models. It follows that in the set S of nontriv-
ial CCCP-functions for a given algebra, no function results from another
CCCP-function by conditionalisation.

Definition. A proposition A ∈ F is P -atom if P (A) > 0 and ∀X ∈ F :
P (AX) = 0 or P (AX) = P (A).
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Proof. Suppose that (W,F, P,→) and (W,F, PC ,→) are distinct non-trivial
models and CCCP holds for both. Since the models are distinct, P (C) < 1.
Since (W,F, PC ,→) is non-trivial, C is not P -atom, for otherwise PC would
only assume the values 0 and 1. Therefore, one can choose a D ⊂ C such
that 0 < P (D) < P (C). Let E = D ∪ C. Then P (E) < 1. Also,

P (E → C) = P (E → C|C)P (C) + P (E → C|C)P (C)
(expansion by cases)

= P (C|EC)P (C) + P (E → C|C)P (C) (by Lewis’ trick)

= P (C|EC)P (C) + P (C ∩ (E → C))
(by the definition of cond. prob.)

= 0 + P (C ∩ (E → C)) (C ∩ C = ∅)

≤ P (C) .

Since P is a CCCP-function by assumption,

P (E → C) = P (C|E)

=
P (E ∩ C)

P (E)

=
P (C)

P (E)
. (since C ⊆ E)

Combining these two equations, it follows that

P (C) ≤ P (E)P (C) ,

and thus 1 ≤ P (E) – a contradiction.

Hájek and Hall’s Impossibility Results

Definition. Two probability functions P and P ′ are called orthogonal if
for some A ∈ F it holds that P (A) = 1 and P ′(A) = 0. (Note that this
property is symmetric: if P (A) = 0, then P (A) = 1.)
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Orthogonality result (Hall): For distinct P and P ′ in S, P and P ′ are
orthogonal.

Note: Lewis’ results follow from this, as no two probability functions where
one is derived from the other by conditioning or non-degenerate Jeffrey con-
ditioning can be orthogonal.

Although the orthogonality result seems rather inconspicuous compared to
the other results mentioned here, it has the following troublesome conse-
quence: assume an agent’s belief in A→ B is given by the CCCP-function
P (A→ B). If this belief is now being updated given some new evidence (e.g.
in the context of Bayesian learning), resulting in the belief P ′(A→ B), the
function P ′ is not CCCP since it is derived from P by a form of conditional-
ising. In other words, the orthogonality result implies that any conditional
belief-updating framework is not compatible with an algebra (W,F,→).

Finitude result (Hájek): If W is finite, the set S of non-trivial CCCP -
functions for the algebra (W,F,→) is empty.

Weakened transitivity result (Hájek and Hall): There are no nontrivial
CCCP-functions for any algebra whose ‘→’ obeys (L1), (L2) and (L3). This
entails an earlier result by Stalnaker stating that CCCP is inconsistent with
the assumption that the logic of ‘→’ is C2, since C2 contains (L1)-(L3).

5.5 Impact on CCCP

We conclude the chapter by briefly outlining what the different triviality
results imply for the plausibility of the CCCP hypothesis.8

The universal version was refuted right at the beginning in Section 5.1.
Regarding the belief function version, the orthogonality result implies that
the belief function version of CCCP is only true if any two belief functions
are either equal or orthogonal, which is absurd. The universal tailoring ver-
sion is to be discarded as well. This follows from the finitude result together
with the fact that there will be functions definable on F that will have a
finite range.

The version that remains is the belief function tailoring version: ‘For each

8This section is based on Hájek & Hall (1994).
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P that could describe a rational agent’s set of beliefs, there is some ‘→’
such that CCCP holds for the model (W,F, P,→).’ Hájek & Hall (1994)
show that although it cannot be disproved, it is still untenable for reasons
provided by the triviality results. For example, if a rational agent updates
her belief function, in most cases the resulting belief function will not be
orthogonal to her previous belief function, which discredits most belief func-
tions.

For these reasons, the hypothesis is to a large extent refuted.
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Chapter 6

Conclusion and Outlook

In this chapter, I give a summary of the various accounts of conditionals
presented in this thesis, mention some philosophically relevant ways to ex-
tend their presentation, and conclude by two ideas for further work.

The thesis started out by pointing out problems of the material condi-
tional and by presenting Grice’s theory of implicatures as a possible tool
for avoiding them, which turned out to be insufficient. It continued with an
introduction to probability theory in the context of propositional logic.
Ramsey’s suggestion that the degree of acceptance for a conditional is the
degree of belief in the consequent given the antecedent was explored: Adams’
account of conditionals was portrayed, following Ramsey’s idea by stating
that conditionals do not bear truth values but conditional probabilities,
defining them to be P (A → B) := P (B|A). Next, Stalnaker’s approach to
characterise conditionals in the terminology of possible worlds was depicted,
along with his C2 logic.
Then the CCCP (‘conditional construal of conditional probability’) hypoth-
esis was introduced: ‘Conditional probability is the probability of the con-
ditional’, that is: P (A → B) = P (B|A), claiming equality of probabili-
ties of elements in the probability space (L→, F, P ), not just a definition
P (A → B) := P (B|A) where only A and B are in the probability space
(L, F, P ) as before.
The probabilistic entailment that followed showed Stalnaker’s C2 to be con-
tained in the logic resulting by combining CCCP with three additional ax-
ioms, thus showing that the following triviality results also apply to Stal-
naker’s C2. Lewis’ triviality results were stated and proved, and some of
the stronger triviality results by Hájek and Hall were mentioned.

40



Finally, the meaning of these results for the different versions of the CCCP
hypothesis was stated: only one of these versions was not disproved by the
triviality results but was argued to be untenable.

As mentioned in the introduction, the main focus of the thesis was on formal
aguments, particularly Lewis’ impossibility results, rather than interpreta-
tive content. Two possible philosophical extensions to this work would be:
First, the thesis did not go into details on why to believe or not to believe
CCCP except for formal reasons; for a thorough account on this, see Hájek
& Hall (1994).
Second, the thesis only dealt with indicative conditionals, that is: ‘if p is the
case, then q is the case’-statements of the form ‘if one fact holds, so does
another’; it did not involve work on subjunctive conditionals (also called
counterfactuals) that have the form: ‘if it were the case that p, then it
would be the case that q’ (although p is not the case, thus the term ‘coun-
terfactual’).

To conclude, I suggest two, admittedly vague, ideas worth pursuing for a
better understanding of conditionals and state my personal view why the
failure of CCCP is not the end of a probabilistic theory of conditionals.

– Based on the probabilistic calculus in the context of propositional logic,
one could try to introduce a probabilistic calculus that only accepts
conditionals as events.

– Alternatively, one could try to modify Grice’s theory of implication in
order to apply it to the strict conditional and/or Stalnaker’s C2 logic.
(For example, following Grice’s principles, it would not be conversa-
tionally appropriate to assert p→ q if q is always true.) To avoid the
difficulties of Grice’s theory, one could interpret the Cooperative Prin-
ciple in a stronger sense, leaving out some rules Grice derived from
it, such as the rule that requires to be polite (Davis, 2013). It might
also be promising to formalise Grice’s notion of ‘informativeness’ using
information theory.

To me, the failure of the CCCP hypothesis seems less devastating for a prob-
abilistic perspective on conditionals than one might think. The hypothesis
itself seemed to me like a meta-level error in some way, for p → q shall
describe a (yet to be specified) relation between propositions ‘if p then q’,
not a proposition.
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In particular, considering the fact that we hoped to define ‘→’ that way,
what is an expression like P (p|q → r) (‘the probability of a proposition
given a relation between propositions’) even supposed to mean?
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Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig und nur
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